
On c-animals interacting with a surface

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 3989

(http://iopscience.iop.org/0305-4470/24/16/033)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 13:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 24 (1991) 3989-3994. Printed in the U K  

On c-animals interacting with a surface 
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Abslraet. We examine the interaction of weakly embedded <-animals with an adsorbtion 
surface and show that such animals have the same reduced free energy ai that for weakly 
embedded trees. By assuming the existence of e, (w) ,  the critical exponent for trees, we 
show that e , ( w )  exists and e , ( w )  = e , ( w )  - c far all W. 

1. Introduction 

Lattice animals, as connected subgraphs of  a regular lattice, are considered as a model 
for branched polymers in a good solvent. The influence of the cycle fugacity on the 
properties of lattice animals has been examined by a number of workers (Lubensky 
and  lsaacson 1979, Family 1980, Whittington er a1 1983, Soteroes and  Whittington 
1988). To study the crossover from trees to animals, Whittington et al(l983) introduced 
e-animals, which are lattice animals with a cyclomatic index e. Denoting by a,(c), the 
number of c-animals with n vertices, they showed that 

lim n-' log a , , ( c )  = log A,, (1.1) 
n-m 

where ho is the connective constant for lattice trees. With the assumption that a.(O)- 
A;n-"n, Soteross and Whittington (1988) showed that 

a, ( c) - A: n-'. 

with 

e,= Bo-  e. 

Recently, De'Bell er a1 (1990) and Lookman et a1 (1990) studied the interaction 
of (weakly embedded) animals (trees) with an adsorption surface, which can he either 
penetrable or  impenetrable. It has been shown that the limit 

lim n- '  log A , , ( w )  = lim n - '  log (1.4) 
>I-_ ,I +N 

exists for all w, where a,,,, is the number of n-vertex animals (trees) with i vertices i n  
the surface (either penetrable or  impenetrable), and w is the interaction energy. By 
analogy, one would expect that, as n + m, 
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In this paper, we consider the interaction between a penetrable or impenetrable 
adsorption surface and c-animals. We write a,.,(c) as the number of n-vertex c-animals 
with i vertices in the surface. By generalizing the arguments of Soteros and Whittington 
(1988), we show that 

lim n-' log A,(c, w )  = lim n-' log =log A(0; w )  (1.6) 
"-m n-m 

where log A(0, w )  is the reduced free energy for trees. With the assumption (1.5) for 
trees, we show that An(c, w )  also has the asymptotic form of (1.5) with 

e,(w)  = s,(w)  - c (1.7) 

for all w,  where & ( w )  is the critical exponent of trees in (IS). In (1.6) and (1.7) we 

& ( w )  and S , ( w )  apply depending o n  the surface. 
A -  -..t .I:"*: _-.. :=l. he+...aa.. thr +...e n..foner Tt :r ....rla.rt~..rl +I.-+ +hn reln.in.r+ Lln ... 1 
"U ,,Ut "1JL,L1&"1"" UCL,YCCII  L l lC  L W "  a"LI',CLa. .L ID  " I I " L I D L " " "  L l l l l  L 1 1 L  I b l C l b l l L  'L,", w , ,  

2. Proof of the results 

Let an,,( c) denote the number of n-vertex c-animals with i vertices in the surface x, = 0. 
Following the arguments of Whittington e f  a/  (1983), we obtain 

a J c ) ~ ( 2 d n ) .  a , , ( @ .  (2.1) 

Multiplying both sides by e'" and summing over i yields 

k " ( c , w ) < ( ; & i ) . k " ( -  L - , , W , .  3 . .>  ( 2 . 2 )  

We generalize a series of theorems and lemmas given by Soteros and Whittington 
(1988) (sw) to the case where an adsorption surface is present. 

We concentrate on c-animals embedded in the square lattice. However, the results 
can be generalized to the d-dimensional hypercubic lattice. In  the square lattice, a 
vertex has coordinates (x> y ) .  The adsorption 'surface' is x = 0. A vertex is a member 
of V, if it is of degree 4 and is a member of V,, V,, V, or V, if it is of degree 3 and 
is not connnected to the neighbouring vertex in south, west, north or east direction 
respectively (figure I ) .  

neorem 1 .  Every n-vertex tree containing a vertex V"E V,, V,, V,, V, or V, can be 
converted into a I-animal (with n + 1 vertices) containing a 4-cycle in which ug is the 
bottom or top vertex of the 4-cycle. The resulting I-animal can have at most three 
trees rooted at a vertex in V,, V,, V,, V, and V, as precursors. 

1 2 3 4 5 

Figure 1. On the square la i i ice B YCTICX of degree greater than 2 must be one of the five 
lypes shown. 
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The proof of theorem 1 follows the same procedure as that given in s w  except that 
when uo = (x, y )  E V, or V,, we have to consider the vertex U; with coordinates (x - 1, y - 
1). We note that within the procedure, the number of vertices of a tree in the surface 
is unchanged. Hence, if the tree has i vertices in the surface, the resulting 1-animal 
can have either i or i f 1  vertices in the surface. We denote by b4?(E) the number of 
n-vertex trees with i vertices in the surface containing more than En vertices which 
are members of V', one of V,, V,, V,, V, and V,. Let a.,Jc) be the member of c-animals 
having n vertices with i of them in the surface. Following theorem 1, we have 

Generally, if a tree has n vertices containing at least c vertices in V ,  we obtain 

a . + . j ( c ) + a . + , i + , ( c l + .  . . + a n + , j + , ( c )  3 - b , , ( ~ ) / 3 '  (2.41 (3 
for E n  3 c 

Lemma 1 .  If tJe,  >) is the number of n-vertex trees with i vertices in the surface 
and containing more than En venices of degree greater than 2, then, by choosing V', 
we have 

b , i ( ~ / 5 )  3 fa.;(&, > ) / S .  (2 .5)  

Proof: Let S+(E, >) be the set of n-vertex trees with i vertices in the surface and 
containing more than en vertices of degree greater than 2. We construct subsets 
S;;(E, >) such that a tree TE & ( E ,  >) is a member of S;<(E, >) if m is the smallest 
number such that the number of vertices in V , ( T )  is at least as large as the number 
in V,( T ) ,  k = 1,. . , , 5 ,  k # m. Thus T can be a member of only one subset S ; ( ( E ,  >). 
Let V, be V' such that 

I S ~ j ( ~ , > ) l = m a x I ~ S ) n , i ( ~ , > ) ~ r j = l  , . . . ,  5) .  ( 2 . 6 )  

1 . 1  denotes the cardinality of a set. From the definitions of S J E , > )  and S! , ,? (E ,> ] ,  
there must be more than ~ n / 5  vertices in V'= V,,,. Hence 

5 

b".i(~/5) 3 ( & . ; ( E ,  >)I 3 1 IS!Q(E, >II/S= tn , , (& ,  >)/S. (2.71 
, = I  

From lemma 1 and (2.4), we have 

with E ' =  ~ / 5 .  Multiplying by ely and summing over I gives 

Ern 
c .  (1 +elu1+.  . .+e'IW1)A,,+,(c, w )  3 ( ) T.(E, >, w ) / 5  ' 3 ' .  

Lemma 2. Let I , , , (&,  s) be the number of n-vertex trees with i vertices in the surface 
and containing at most ~n vertices of degree greater than 2. Define 

(2.9) 

T , , ( E , S , W ) = ~  t m , , ( ~ , s ) e " " .  (2.10) 
,=, 
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Then, for any E in [ 0 , 1 ] ,  the limit 
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lim n - ' l o g T , ( ~ , ~ , w ) = l o g ~ ( ~ , w ) < m  
,,-m 

exists for all w ,  

(2 .11 )  

Proof: By using the concatenation given by Lookman et a/  (1990)  and following the 
line of argument given by Lipson and  Whittington (1983) ,  we establish (2 .9 ) .  

, It is obvious that, as E = 0, we have log T ( 0 ,  w )  = A ( w ) ,  the reduced free energy 
for non-uniform 2-stars (see the appendix), where as if E = 1, log T ( 1 ,  w )  = log A(0, w ) ,  
the reduced free energy for trees. 

Lemma 3. For given w, log T ( E ,  w )  is a concave function of E in [ 0 , 1 ]  

Lemma 4. For given w, log T ( E ,  w )  is a conntinuous function of E in [0, 11.  

Proof: The  continuity of log T ( E ,  w )  for E E [ 0 , 1 ]  is establshed by following the same 
procedure in s w  exceot that we replace their equation (2 .10 )  by 

u , ( w , 4 E ) s  m * 4 r o  Tin)(  m - 2  " - 2 ) ( n - 2 ) e x p [ n A ( w ) + o ( n ) ]  (2 .12)  

where U n ( w , 4 ~ n )  is the generating function of the n-vertex trees with at most ~n 
vertices of degree not equal to 2 .  There are a total of m - 1 branches with length less 
than n-step. A branch can have either some vertices or no vertices in the surface. 
Following the arguments given by Zhao and Lookman (1990) ,  we obtain the term 
( n  - 2 )  exp[nA(w) + o ( n ) ] .  

Lemma 5. For given w, there exists ~ " ( w )  > 0 such that for E < & " ( U ) ,  

lim ( T " ( & , > , w ) / A , ( O , o ) ) = l .  (2 .13 )  

Proof: Since T ( E ,  w )  is continuous for E in [ 0 , 1 ]  and T(0,  w )  < T ( 1 ,  w )  ( A 1 0 ,  A l l ) ,  
there exists ~ ~ ( w )  > 0 such that for all E < E " ( w ) ,  T ( E ,  U )  < T(1, U ) .  We can write 

m - c c  

T,(E, >, w ) / A , ( O ,  w ) =  1 - T , ( E ,  s,  w)/A,,(O, 

= 1 - [ T (  E, w ) /  T(  1, w 11'' exp(o( n ) )  (2 .14 )  

and letting n + m proves the lemma. 

Equations (2.7) and (2 .12 )  lead to lemma 6. 

Lemma 6. For given w, there exists a constant C ( w ) > O  and an integer N ( w )  such 
that for all n > N ( w )  

A A ~ ,  C ( ~ ) ( ~ ; ) A A O ,  w )  (2 .15)  

f o r a n y  E S E ~ ,  where &'=EIS  
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From (2.2) and (2.13), we have theorem 2. 

Theorem 2. For given 0, 

lim n-' log A,(c,  w )  = A(0, W )  
"-m 

(2.16) 

and, if limH-m [log(A,(O, w) /A(O,  w)")/log n ]  = -e , (w)  exists, then 

lim [log(A.(c, w) /h (O,  o)")/log n ]  = (2.17) 
H - m  

exists for all c and 

e,(o)= e , ( w ) - c .  (2.18) 

3. Discussion 

In section 2, the results of Whittington et a/  (1983) and Soteros and Whittington (1988) 
for c-animals have been generalized to the case where an adsorption surface exists. 
We thus have an example where certain critical properties of polymer networks in the 
bulk are preserved when the networks interact with an adsorption surface, implying 
that a surface interaction is an irrelevant operator. 

We also note that, if the cyclomatic index c satisfies c = O(n/log n ) ,  from (2.2) and 
(2.14), all results are still valid except in this case, we have to replace (2.15) and (2.16) 
by the limit 

(3.1) lim {[ log(A,(c ,  ~ ) / A ( O , w ) ~ ) / l o g  n]-c(n) j= O,(w).  
,t-- 
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Appendix 

A linear polymer rooted on a surface with the root at one of the vertices in  the surface 
can be defined as a non-uniform 2-sta1, and it has been shown (Zhao and Lookman 
1990) that 

lim n-' log S,,(2, w )  = lim n - '  log (AI )  
I,-_ ,,-e 

and 

lim n-' log S:(2 ,  w )  = lim n - '  log (A2) 

where SJS;,~) is the number of non-uniform 2-stars with ( n + l )  vertices and ( i + l )  
of them in a penetrable (impenetrable) surface, and A ( w ) ( A + ( w ) )  is the reduced free 
energy of SAW$ interacting with a penetrable (impenetrable) surface (Hammersley er 
af 1982). 

n-m n - w  
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By a translation, any n-step self-avoiding walk (SAW) in the bulk can be mapped 
to at least one non-uniform 2-sta1, which may be rooted on either a penetrable or  an 
impenetrable surface. Such a mapping is injective. Hence we have 

a n < S ~ ( 2 , O ) s S , ( 2 , 0 ) .  (A31 

For w 20, we have ey 2 1.  Consider an ( n ,  + n,)-step SAW rooted on the surface 
with a total ( i + l )  vertices in a penetrable surface. By cutting it at the vertex x ( n , ) ,  
we obtain two SAWS. By a translation until both of them have visits to the surface, we 
obtain two non-uniform 2-star with a total ( i ' +  1 )  3 ( i +  1 )  vertices in the surface. Since 
not all 2-stars can be obtained in this way, we have 

(A41 Sm,(2, w )  ' Sn, (2 ,  U) 3 An,+m2(w).  

With this inequality, we obtain that, for any n and w 3 0 ,  

n - ' l o g S , , ( 2 , w ) a A ( w ) .  (AS) 

It has been shown (Lookman el a /  1990) that 

T,,(w) . Tn2(w)S  T",+,Jw). (A6) 

Hence, for any n, we have 

n-' log T,,(w) s log A(0, w ) .  (A71 

Since for any n, 

S"(2,  w )  < T . ( w )  (AS) 

for w 3 0, we have 

A ( w ) < A ( O , w ) .  (A91 

For w < 0, it has been shown that A ( w )  = K (Hammersley er a/  1982), A(0, w )  = A,, 

A ( w )  < A(0, w ) .  (AIO) 

(Lookman el al 1990) and K <A,, (Gaunt el a /  1984). Hence for any w,  we have 

Similarly, i t  can also be shown that, for any w, 

A'(w) < A+(O, w ) .  
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