On c-animals interacting with a surface

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 243989
(http://iopscience.iop.org/0305-4470/24/16/033)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 13:49

Please note that terms and conditions apply.

On c-animals interacting with a surface

Dongming Zhao and Turab Lookman
Department of Applied Mathematics, University of Western Ontario, London, Canada N6A 5B9

Received 3 January 1991

Abstract

We examine the interaction of weakly embedded c-animals with an adsorbtion surface and show that such animals have the same reduced free energy as that for weakly embedded trees. By assuming the existence of $\theta_{0}(\omega)$, the critical exponent for trees, we show that $\theta_{c}(\omega)$ exists and $\theta_{c}(\omega)=\theta_{0}(\omega)-c$ for all ω.

1. Introduction

Lattice animals, as connected subgraphs of a regular lattice, are considered as a model for branched polymers in a good solvent. The influence of the cycle fugacity on the properties of lattice animals has been examined by a number of workers (Lubensky and Isaacson 1979, Family 1980, Whittington et al 1983, Soteroes and Whittington 1988). To study the crossover from trees to animals, Whittington et al (1983) introduced c-animals, which are lattice animals with a cyclomatic index c. Denoting by $a_{n}(c)$, the number of c-animals with n vertices, they showed that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log a_{n}(c)=\log \lambda_{0} \tag{1.1}
\end{equation*}
$$

where λ_{0} is the connective constant for lattice trees. With the assumption that $a_{n}(0) \sim$ $\lambda_{0}^{n} n^{-\theta_{0}}$, Soteross and Whittington (1988) showed that

$$
\begin{equation*}
a_{n}(c) \sim \lambda_{0}^{n} n^{-\theta_{c}} \tag{1.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\theta_{\mathrm{c}}=\theta_{0}-c . \tag{1.3}
\end{equation*}
$$

Recently, De'Bell et al (1990) and Lookman et al (1990) studied the interaction of (weakly embedded) animals (trees) with an adsorption surface, which can be either penetrable or impenetrable. It has been shown that the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log A_{n}(\omega)=\lim _{n \rightarrow \infty} n^{-1} \log \left(\sum_{i=1}^{n} a_{n, \mathrm{i}} \mathrm{e}^{\mathrm{i} \omega}\right)=\log \lambda(\omega) \tag{1.4}
\end{equation*}
$$

exists for all ω, where $a_{n, i}$ is the number of n-vertex animals (trees) with i vertices in the surface (either penetrable or impenetrable), and ω is the interaction energy. By analogy, one would expect that, as $n \rightarrow \infty$,

$$
\begin{equation*}
A_{n}(\omega) \sim n^{-\theta(\omega)} \lambda^{n}(\omega) \tag{1.5}
\end{equation*}
$$

In this paper, we consider the interaction between a penetrable or impenetrable adsorption surface and c-animals. We write $a_{n, i}(c)$ as the number of n-vertex c-animals with i vertices in the surface. By generalizing the arguments of Soteros and Whittington (1988), we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log A_{n}(c, \omega)=\lim _{n \rightarrow \infty} n^{-1} \log \left(\sum_{i=1}^{n} a_{n, i}(c) \mathrm{e}^{\mathrm{i} \omega}\right)=\log \lambda(0 ; \omega) \tag{1.6}
\end{equation*}
$$

where $\log \lambda(0, \omega)$ is the reduced free energy for trees. With the assumption (1.5) for trees, we show that $\boldsymbol{A}_{n}(c, \omega)$ also has the asymptotic form of (1.5) with

$$
\begin{equation*}
\theta_{c}(\omega)=\theta_{0}(\omega)-c \tag{1.7}
\end{equation*}
$$

for all ω, where $\theta_{0}(\omega)$ is the critical exponent of trees in (1.5). In (1.6) and (1.7) we do not distinguish between the two surfaces. It is understood that the relevent $\lambda(0, w)$, $\theta_{0}(\omega)$ and $\theta_{c}(\omega)$ apply depending on the surface.

2. Proof of the results

Let $a_{n, i}(c)$ denote the number of n-vertex c-animals with i vertices in the surface $x_{1}=0$. Following the arguments of Whittington et al (1983), we obtain

$$
\begin{equation*}
a_{n, i}(c) \leqslant(2 d n) \cdot a_{n, i}(0) \tag{2.1}
\end{equation*}
$$

Multiplying both sides by $\mathrm{e}^{\mathrm{i} \omega}$ and summing over i yields

$$
\begin{equation*}
A_{n}(c, w) \leqslant(2 d n) \cdot A_{n}(c-1, w) \tag{2.2}
\end{equation*}
$$

We generalize a series of theorems and lemmas given by Soteros and Whittington (1988) (sw) to the case where an adsorption surface is present.

We concentrate on c-animals embedded in the square lattice. However, the results can be generalized to the d-dimensional hypercubic lattice. In the square lattice, a vertex has coordinates (x, y). The adsorption 'surface' is $x=0$. A vertex is a member of V_{1} if it is of degree 4 and is a member of V_{2}, V_{3}, V_{4} or V_{5} if it is of degree 3 and is not connnected to the neighbouring vertex in south, west, north or east direction respectively (figure 1).

Theorem 1. Every n-vertex tree containing a vertex $v_{0} \in V_{1}, V_{2}, V_{3}, V_{4}$ or V_{5} can be converted into a 1 -animal (with $n+1$ vertices) containing a 4 -cycle in which v_{0} is the bottom or top vertex of the 4 -cycle. The resulting 1-animal can have at most three trees rooted at a vertex in $V_{1}, V_{2}, V_{3}, V_{4}$ and V_{5} as precursors.

Figure 1. On the square lattice a vertex of degree greater than 2 must be one of the five types shown.

The proof of theorem 1 follows the same procedure as that given in sw except that when $v_{0}=(x, y) \in V_{4}$ or V_{5}, we have to consider the vertex v_{3}^{\prime} with coordinates $(x-1, y-$ 1). We note that within the procedure, the number of vertices of a tree in the surface is unchanged. Hence, if the tree has i vertices in the surface, the resulting 1 -animal can have either i or $i+1$ vertices in the surface. We denote by $b_{n, i}(\varepsilon)$ the number of n-vertex trees with i vertices in the surface containing more than εn vertices which are members of V^{\prime}, one of $V_{1}, V_{2}, V_{3}, V_{4}$ and V_{5}. Let $a_{n, i}(c)$ be the member of c-animals having n vertices with i of them in the surface. Following theorem 1 , we have

$$
\begin{equation*}
a_{n+1, i}(1)+a_{n+1, i+1}(1) \geqslant\left(\frac{\varepsilon n}{1}\right) b_{n, i}(\varepsilon) / 3 . \tag{2.3}
\end{equation*}
$$

Generally, if a tree has n vertices containing at least c vertices in V^{\prime}, we obtain

$$
\begin{equation*}
a_{n+c, i}(c)+a_{n+c, i+1}(c)+\ldots+a_{n+c, i+c}(c) \geqslant\left(\frac{\varepsilon n}{c}\right) b_{n, i}(\varepsilon) / 3^{c} \tag{2.4}
\end{equation*}
$$

for $\varepsilon n \geqslant c$.
Lemma 1. If $t_{n, i}(\varepsilon,>)$ is the number of n-vertex trees with i vertices in the surface and containing more than εn vertices of degree greater than 2 , then, by choosing V^{\prime}, we have

$$
\begin{equation*}
b_{n, i}(\varepsilon / 5) \geqslant t_{n, i}(\varepsilon,>) / 5 \tag{2.5}
\end{equation*}
$$

Proof. Let $S_{n, i}(\varepsilon,>)$ be the set of n-vertex trees with i vertices in the surface and containing more than εn vertices of degree greater than 2 . We construct subsets $S_{n, i}^{m}(\varepsilon,>)$ such that a tree $T \in S_{n, i}(\varepsilon,>)$ is a member of $S_{n, i}^{m}(\varepsilon,>)$ if m is the smallest number such that the number of vertices in $V_{m}(T)$ is at least as large as the number in $V_{k}(T), k=1, \ldots, 5, k \neq m$. Thus T can be a member of only one subset $S_{n, i}^{m}(\varepsilon,>)$. Let V_{m} be V^{\prime} such that

$$
\begin{equation*}
\left|S_{n, i}^{m}(\varepsilon,>)\right|=\max \left\{\left|S_{n, i}^{j}(\varepsilon,>)\right|, j=1, \ldots, 5\right\} . \tag{2.6}
\end{equation*}
$$

$|\cdot|$ denotes the cardinality of a set. From the definitions of $S_{n, i}(\varepsilon,>)$ and $S_{n, i}^{j}(\varepsilon,>)$, there must be more than $\varepsilon n / 5$ vertices in $V^{\prime}=V_{m}$. Hence

$$
\begin{equation*}
b_{n, i}(\varepsilon / 5) \geqslant\left|S_{n, i}(\varepsilon,>)\right| \geqslant \sum_{j=1}^{5}\left|S_{n, i}^{j}(\varepsilon,>)\right| / 5=t_{n, i}(\varepsilon,>) / 5 . \tag{2.7}
\end{equation*}
$$

From lemma 1 and (2.4), we have

$$
\begin{equation*}
a_{n+c, i}(c)+\ldots+a_{n+c, i+c}(c) \geqslant\binom{\varepsilon^{\prime} n}{c} t_{n, i}(\varepsilon,>) / 5 \cdot 3^{c} \tag{2.8}
\end{equation*}
$$

with $\varepsilon^{\prime}=\varepsilon / 5$. Multiplying by $\mathrm{e}^{\mathrm{i} \omega}$ and summing over i gives

$$
\begin{equation*}
c \cdot\left(1+\mathrm{e}^{|\omega|}+\ldots+\mathrm{e}^{c|\omega|}\right) A_{n+c}(c, \omega) \geqslant\binom{\varepsilon^{\prime} n}{c} T_{n}(\varepsilon,>, \omega) / 5 \cdot 3^{c} \tag{2.9}
\end{equation*}
$$

Lemma 2. Let $t_{n, i}(\varepsilon, \leqslant)$ be the number of n-vertex trees with i vertices in the surface and containing at most εn vertices of degree greater than 2 . Define

$$
\begin{equation*}
T_{n}(\varepsilon, \leqslant, \omega)=\sum_{i=1}^{n} t_{n, i}(\varepsilon, \leqslant) \mathrm{e}^{\mathrm{i} \omega} \tag{2.10}
\end{equation*}
$$

Then, for any ε in $[0,1]$, the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log T_{n}(\varepsilon, \leqslant, \omega)=\log T(\varepsilon, \omega)<\infty \tag{2.11}
\end{equation*}
$$

exists for all ω.

Proof. By using the concatenation given by Lookman et al (1990) and following the line of argument given by Lipson and Whittington (1983), we establish (2.9).

It is obvious that, as $\varepsilon=0$, we have $\log T(0, \omega)=A(\omega)$, the reduced free energy for non-uniform 2 -stars (see the appendix), where as if $\varepsilon=1, \log T(1, \omega)=\log \lambda(0, \omega)$, the reduced free energy for trees.

Lemma 3. For given $\omega, \log T(\varepsilon, \omega)$ is a concave function of ε in $[0,1]$.

Lemma 4. For given $\omega, \log T(\varepsilon, \omega)$ is a conntinuous function of ε in $[0,1]$.
Proof. The continuity of $\log T(\varepsilon, \omega)$ for $\varepsilon \in[0,1]$ is establshed by following the same procedure in sw exceot that we replace their equation (2.10) by

$$
\begin{equation*}
u_{n}(\omega, 4 \varepsilon) \leqslant \sum_{m \leqslant 4 \varepsilon n} T(n)\binom{n-2}{m-2}(n-2) \exp [n A(\omega)+o(n)] \tag{2.12}
\end{equation*}
$$

where $U_{n}(\omega, 4 \varepsilon n)$ is the generating function of the n-vertex trees with at most εn vertices of degree not equal to 2 . There are a total of $m-1$ branches with length less than n-step. A branch can have either some vertices or no vertices in the surface. Following the arguments given by Zhao and Lookman (1990), we obtain the term $(n-2) \exp [n A(\omega)+o(n)]$.

Lemma 5. For given ω, there exists $\varepsilon_{0}(\omega)>0$ such that for $\varepsilon<\varepsilon_{0}(\omega)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T_{n}(\varepsilon,>, \omega) / A_{n}(0, \omega)\right)=1 \tag{2.13}
\end{equation*}
$$

Proof. Since $T(\varepsilon, \omega)$ is continuous for ε in [0, 1] and $T(0, \omega)<T(1, \omega)$ (A10, A11), there exists $\varepsilon_{0}(\omega)>0$ such that for all $\varepsilon<\varepsilon_{0}(\omega), T(\varepsilon, \omega)<T(1, \omega)$. We can write

$$
\begin{align*}
T_{n}(\varepsilon,>, \omega) / A_{n}(0, \omega) & =1-T_{n}(\varepsilon, \leqslant, \omega) / A_{n}(0, \omega) \\
& =1-[T(\varepsilon, \omega) / T(1, \omega)]^{n} \exp (o(n)) \tag{2.14}
\end{align*}
$$

and letting $n \rightarrow \infty$ proves the lemma.
Equations (2.7) and (2.12) lead to lemma 6.
Lemma 6. For given ω, there exists a constant $C(\omega)>0$ and an integer $N(\omega)$ such that for all $n>N(\omega)$

$$
\begin{equation*}
A_{n}(c, \omega)=C(\omega)\binom{\varepsilon^{\prime} n}{c} \boldsymbol{A}_{n}(0, \omega) \tag{2.15}
\end{equation*}
$$

for any $\varepsilon \leqslant \varepsilon_{0}$, where $\varepsilon^{\prime}=\varepsilon / 5$.

From (2.2) and (2.13), we have theorem 2.
Theorem 2. For given ω,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log A_{n}(c, \omega)=\lambda(0, \omega) \tag{2.16}
\end{equation*}
$$

and, if $\lim _{n \rightarrow \infty}\left[\log \left(A_{n}(0, \omega) / \lambda(0, \omega)^{n}\right) / \log n\right]=-\theta_{0}(\omega)$ exists, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\log \left(A_{n}(c, \omega) / \lambda(0, \omega)^{n}\right) / \log n\right]=-\theta_{c}(\omega) \tag{2.17}
\end{equation*}
$$

exists for all c and

$$
\begin{equation*}
\theta_{c}(\omega)=\theta_{0}(\omega)-c \tag{2.18}
\end{equation*}
$$

3. Discussion

In section 2, the results of Whittington et al (1983) and Soteros and Whittington (1988) for c-animals have been generalized to the case where an adsorption surface exists. We thus have an example where certain critical properties of polymer networks in the bulk are preserved when the networks interact with an adsorption surface, implying that a surface interaction is an irrelevant operator.

We also note that, if the cyclomatic index c satisfies $c=0(n / \log n)$, from (2.2) and (2.14), all results are still valid except in this case, we have to replace (2.15) and (2.16) by the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\left[\log \left(A_{n}(c, \omega) / \lambda(0, \omega)^{n}\right) / \log n\right]-c(n)\right\}=\theta_{0}(\omega) . \tag{3.1}
\end{equation*}
$$

Acknowledgments

The authors would like to thank K De'Bell for discussion. This work was supported in part by NSERC of Canada.

Appendix

A linear polymer rooted on a surface with the root at one of the vertices in the surface can be defined as a non-uniform 2-star, and it has been shown (Zhao and Lookman 1990) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log S_{n}(2, \omega)=\lim _{n \rightarrow \infty} n^{-1} \log \left(\sum_{i=0}^{n} s_{n, i} \mathrm{e}^{\mathrm{i} \omega}\right)=\boldsymbol{A}(\omega) \tag{A1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log S_{n}^{+}(2, \omega)=\lim _{n \rightarrow \infty} n^{-1} \log \left(\sum_{i=0}^{n} s_{n, i}^{+} \mathrm{e}^{\mathrm{i} \omega}\right)=A^{+}(\omega) \tag{A2}
\end{equation*}
$$

where $s_{n, i}\left(s_{n, i}^{+}\right)$is the number of non-uniform 2-stars with $(n+1)$ vertices and $(i+1)$ of them in a penetrable (impenetrable) surface, and $A(\omega)\left(A^{+}(\omega)\right)$ is the reduced free energy of SAW interacting with a penetrable (impenetrable) surface (Hammersley et al 1982).

By a translation, any n-step self-avoiding walk (SAW) in the bulk can be mapped to at least one non-uniform 2-star, which may be rooted on either a penetrable or an impenetrable surface. Such a mapping is injective. Hence we have

$$
\begin{equation*}
a_{n} \leqslant S_{n}^{+}(2,0) \leqslant S_{n}(2,0) \tag{A3}
\end{equation*}
$$

For $\omega \geqslant 0$, we have $\mathrm{e}^{\omega} \geqslant 1$. Consider an $\left(n_{1}+n_{2}\right)$-step saw rooted on the surface with a total ($i+1$) vertices in a penetrable surface. By cutting it at the vertex $\boldsymbol{x}\left(n_{1}\right)$, we obtain two Saws. By a translation until both of them have visits to the surface, we obtain two non-uniform 2 -star with a total $\left(i^{\prime}+1\right) \geqslant(i+1)$ vertices in the surface. Since not all 2 -stars can be obtained in this way, we have

$$
\begin{equation*}
S_{n_{1}}(2, \omega) \cdot S_{n_{2}}(2, \omega) \geqslant A_{n_{1}+n_{2}}(\omega) \tag{A4}
\end{equation*}
$$

With this inequality, we obtain that, for any n and $\omega \geqslant 0$,

$$
\begin{equation*}
n^{-1} \log S_{n}(2, \omega) \geqslant A(\omega) \tag{A5}
\end{equation*}
$$

It has been shown (Lookman et al 1990) that

$$
\begin{equation*}
T_{n_{1}}(\omega) \cdot T_{n_{2}}(\omega) \leqslant T_{n_{1}+n_{2}}(\omega) \tag{A6}
\end{equation*}
$$

Hence, for any n, we have

$$
\begin{equation*}
n^{-1} \log T_{n}(\omega) \leqslant \log \lambda(0, \omega) \tag{A7}
\end{equation*}
$$

Since for any n,

$$
\begin{equation*}
S_{n}(2, \omega)<T_{n}(\omega) \tag{A8}
\end{equation*}
$$

for $\omega \geqslant 0$, we have

$$
\begin{equation*}
A(\omega)<\lambda(0, \omega) \tag{A9}
\end{equation*}
$$

For $\omega \leqslant 0$, it has been shown that $A(\omega) \equiv \kappa$ (Hammersley et al 1982), $\lambda(0, \omega) \equiv \lambda_{0}$ (Lookman et al 1990) and $\kappa<\lambda_{0}$ (Gaunt et al 1984). Hence for any ω, we have

$$
\begin{equation*}
A(\omega)<\lambda(0, \omega) \tag{A10}
\end{equation*}
$$

Similarly, it can also be shown that, for any ω,

$$
\begin{equation*}
A^{+}(\omega)<\lambda^{+}(0, \omega) \tag{A11}
\end{equation*}
$$

References

De'Bell K, Lookman T and Zhao D 1991 Exact result for trees attached to a surface and estimates of the critical Boltzmann factor for surface absorption Phys. Rev. A 44 in press
Family F 1980 J. Phys. A: Math. Gen. 13 L325
Gaunt D S, Sykes M F, Torrie G M and Whittington S G 1982 J. Phys. A: Math. Gen. 153209
Hammersley J M, Torrie G M and Whittington S G 1982 J. Phys. A: Math. Gen. 15539
Lipson J E G and Whittington S G 1983 J. Phys. A: Math. Gen. 163119
Lookman T, Zhao D and De'Bell K 1991 The surface adsorption transition for lattice trees Preprint University of Western Ontarin
Lubensky T C and Isaacson J 1979 Phys. Rev. A 202130
Soteros C E and Whittington S G 1988 J. Phys. A: Mahh. Gen. 212187
Whittington S G, Torrie G M and Gaunt D S 1983 J. Phys. A: Math. Gen. 161695
Zhao D and Lookman T 1991 Interaction of loops with a surface J. Phys. A: Math. Gen. 241469

